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ABSTRACT 
The purpose of this paper is twofold. Firstly, to present a detailed account of the generalized Lagrangian 
formulation of Hui and Zhao, in which the stream function ξ and Lagrangian distance λ, are used as 
independent variables, and secondly to assess and compare the performance of various flux limiters in this 
formulation with their corresponding performance in the Eulerian formulation. 

The generalized Lagrangian formulation is obtained by a transformation from the cartesian co-ordinates 
(x, y) to the Lagrangian co-ordinates (λ, ξ). In this manner, the number of independent variables for steady, 
3-D flow is reduced from four to three, placing this formulation on the same footing as the Eulerian 
formulation even for steady flows (as opposed to the conventional Lagrangian formulation which apparently 
still requires four independent variables even for steady flows). The generalized Lagrangian formulation 
with the Godunov scheme (using flux limiters) appears to have distinct advantages over the corresponding 
Eulerian formulation, particularly with respect to accuracy. Furthermore, the method requires no grid 
generation. 
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INTRODUCTION 

The numerical simulation and prediction of inviscid compressible flows is an area of increasing 
theoretical and practical importance. Based on fundamental work of Godunov1, a number of 
upwind, high resolution methods for solving the 1-D unsteady Euler equations have been 
developed. These and other approaches have been extensively compared and evaluated in 
Woodward and Collella2, especially for 2-D flows with strong shocks. 

The Euler equations constitute a first order non-linear hyperbolic system of partial differential 
equations (pde's). Thus, even if the initial data and boundary conditions are sufficiently smooth, 
discontinuities will always occur in finite time. Physically, this corresponds to the formation of 
shock waves and slip lines. So, any discretization of the pde's must cope with discontinuities 
and a good computational method should capture the shock waves and sliplines accurately and 
correctly. 

There are two basic approaches for specifying fluid motion, namely—the Eulerian and 
Lagrangian formulations. Nearly all existing methods for computing steady flows are based on 
the Eulerian formulation. This generally resolves slipline discontinuities poorly and always 
requires the generation of a computational grid to fit the given body shape (which itself is 
invariably time consuming). Over the past decade Hui and co-workers3,4 have developed a new 
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Lagrangian method which uses a Lagrangian time Τ and a stream function ξ as independent 
variables to compute 2-D steady, supersonic flows. They have demonstrated that it is superior 
to the Eulerian approach in that it resolves sliplines sharply and the shock resolution improves 
with increasing Mach number. A further advantage to their method is that it requires no grid 
generation. However, Hui and Zhao5 have pointed out that, as it stands, the new Lagrangian 
approach has the following shortcomings: 

1. The flux F (see (24)) is discontinuous across a slipline. Although the discontinuous nature 
of the flux reflects the true dynamics of inviscid flow it can cause problems at the discrete 
level, and it is thus always desirable to ensure that the numerical fluxes are everywhere 
continuous. 

2. The system is not fully hyperbolic in the sense of Whitham6—i.e. although there are six 
real eigenvalues, there are only five linearly independent associated eigenvectors. This does 
not appear to affect the numerical method based on the new Lagrangian formulation (see 
Loh and Hui4). However, on a theoretical basis, it is desirable to transform the system to 
make it fully hyperbolic so that many upwind schemes based on flux splitting can be applied. 

3. It is difficult to apply the new Lagrangian formulation to solve subsonic flow 
problems—since although the boundary corresponds to a streamline, it is difficult to 
prescribe the boundary condition in terms of Τ since the mappings relating the Eulerian 
and new Lagrangian formulations are unknown in advance. In purely supersonic 
computations Loh and Hui4 circumvent this difficulty by using a marching scheme in τ 
and determining the mappings step by step while marching. More recently, based on 
experience with the new Lagrangian method, Hui and Zhao5 have proposed a generalized 
Lagrangian method which uses a Lagrangian distance λ and a stream function ξ as 
independent variables to compute 2-D steady, supersonic flows. 

The purpose of this paper is twofold, firstly to present (in some detail) the generalized 
Lagrangian formulation and secondly to report on some preliminary numerical computations 
comparing the performance of various flux limiters when used in this formulation with their 
corresponding performance in the Eulerian formulation. 

GOVERNING EQUATIONS AND THE GENERALIZED LAGRANGIAN 
FORMULATION 

The inviscid flow of a gas is described by the Euler equations expressing conservation of mass, 
momentum and energy: 

Many of the practical problems encountered in the aero-industry can be posed as steady flow 
problems. For simplicity and ease of exposition we shall describe the generalized Lagrangian 
formulation for steady 2-D flows. In this case, the governing equations (1)-(3) reduce to: 
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where u, v are the x, y components of velocity, H = e + ½(u2 + v2) + p/p is the specific total 
enthalpy and e is the specific internal energy. To derive the generalized Lagrangian formulation 
we integrate equations (4)-(7) over an arbitrary domain Ω, then applying Gauss' divergence 
theorem, we obtain: 

We now make a transformation of the independent variables from (x, y) to (λ, ξ): 

where q = (u2 + v2)½. 

Notice that dξ = 0 (i.e. ξ is stream function) and that along a streamline 

(ξ = constant) we have from equations (12) and (13): 

and dx2 + dy2 = dλ2 

substituting (12) and (13) into equations (8)—(11) we obtain: 
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For smooth flows this is equivalent to: 

These equations together with the following compatibility conditions (obtained from equations 
(12) and (13)): 

form the generalized Lagrangian formulation of the 2-D steady Euler equations of compressible 
flow. The system of equations (18)—(23) can be written in a more compact form as: 

where 

TEST PROBLEMS 

As a preliminary comparison of the performance of various flux limiters in the generalized 
Lagrangian and Eulerian formulations, we consider two test problems. The first problem 
considered is a Riemann problem of 1-D unsteady gas flow in a shock tube with the following 
initial data: 

for γ = 1.4. 
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Analogous to the Riemann problem in 1-D unsteady flow, the Riemann problem in 2-D steady 
supersonic flow is the initial value problem with constant data: 

as initial conditions at λ = 0. 
The solution of the Riemann problem is self-similar in the variables ξ/λ and consists of three 

elementary waves: oblique shock waves, Prandtl-Meyer expansions and slip lines (see Figure 1). 
Suppose Q1 and Q2 are the states across one of the elementary waves, then there are three 

cases: Firstly, suppose the wave is a slip-line, then: 

but there may be an abrupt change in the density and velocity components. Secondly, suppose 
the wave is an oblique shock (with P2 > p1), then from the Rankine-Hugoniot oblique shock 
relations we obtain for the flow deflection angle: 

and 

where α = p2/p1. 
Finally suppose the wave is an expansion fan (here p2 < p1), then: 

and 

p2 = p1α1/γ 

The flow deflection angle is: 
Δθ = [v(M2) - v(M1)] 
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where, 

is the Prandtl-Meyer function. 
Through any state Ql, there will be a family of compression states (a ≥ 1) and expansion 

states (a < 1) connecting to Q1, where α = p/p1. Analogous to 1-D unsteady flow, these two 
families of curves have second-order contact at Q1 and can be considered to be one single family 
(see Reference 7). This forms the basis of the solution procedure used in solving the Riemann 
problem and we refer the reader to Loh and Hui4 and Kachura8 for details of the algorithm. 
Thus the second test problem considered is the Riemann problem for 2-D steady supersonic 
flow with initial data: 

QT: p = 0.25, p = 0.5, M = 4.0, θ = 0 
QB: p = 1.0, p = 1.0 M = 2.4, θ = 0 

for γ = 1.4. 

FLUX LIMITERS AND NUMERICAL COMPUTATIONS 

In this section we carry out a preliminary comparison of various flux limiters used in the solution 
procedure (see Sweby9 for details) which are applied to the Eulerian and generalized Lagrangian 
formulations of the Euler equations of gas dynamics. The test problems considered are the two 
Riemann problems presented in the previous section. For each test case, the error E between 
the exact and computed solutions is calculated using the l1, l∞ and l2 norms. 

For the first test problem of 1-D unsteady gas flow in a shock tube, Tables 1 and 2 provide 
a comparison of the various flux limiters when applied to the Eulerian and generalized Lagrangian 
formulation respectively. 

Overall Roe's superbee flux limiter appears to give the best results both in the Eulerian and 
generalized Lagrangian formulations. The gain in accuracy is obtained through a sharper 

Table 1 Riemann problem for 1-D unsteady flow 
(Eulerian formulation) 

Flux limiter 

Roe's Transfer function 
Roe's Superbee 
van Leer 
van Albada 
Chakravarthy-Osher 

Eχ 

0.560 
0.518 
0.541 
0.552 
0.581 

E1 

1.911 
1.218 
1.531 
1.671 
1.824 

E2 

0.624 
0.537 
0.577 
0.599 
0.631 

Table 2 Riemann problem for 1-D unsteady flow 
(generalized Lagrangian formulation) 

Flux limiter 

Roe's Transfer function 
Roe's Superbee 
van Leer 
van Albada 
Chakravarthy-Osher 

Eχ 

0.370 
0.375 
0.378 
0.369 
0.395 

E1 

1.439 
0.884 
1.152 
1.259 
1.281 

E2 

0.454 
0.396 
0.424 
0.430 
0.450 
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Table 4 Riemann problem for 2-D steady supersonic 
flow (generalized Lagrangian formulation) 

Flux limiter 

Roe's Transfer function 
Roe's Superbee 
van Leer 
van Albada 
Chakravarthy-Osher 

Eχ 

0.377 
0.396 
0.387 
0.379 
0.399 

E1 

1.267 
0.852 
1.003 
1.130 
1.165 

E2 

0.440 
0.417 
0.423 
0.427 
0.447 

Table 3 Riemann problem for 2-D steady supersonic 
flow (Eulerian formulation) 

Flux limiter 

Roe's Transfer function 
Roe's Superbee 
van Leer 
van Albada 
Chakravarthy-Osher 

Eχ 

0.506 
0.521 
0.801 
0.489 
0.547 

E1 

2.293 
1.872 
2.746 
2.011 
2.185 

E2 

0.699 
0.655 
0.947 
0.649 
0.713 

resolution of the expansion fan. Accuracy across the shock and slip line is comparable to that 
for the van Leer or van Albada limiters (see Figures 2, 3, 4). 

For the second test problem of 2-D steady, supersonic flow, the performance of the various 
flux limiters is shown in Tables 3 and 4. 

Although in this case, no single flux limiter performs significantly better than the others, we 
can conclude from the tables that, for each flux limiter tested, the results using the generalized 
Lagrangian formulation prove superior to those using the Eulerian formulation. Figures 5 and 
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6 show the performance of Roe's superbee limiter in the Eulerian and generalized Lagrangian 
formulations. The performance of the flux limiter in the Eulerian formulation, at this high Mach 
number, has deteriorated significantly, while its performance in the generalized Lagrangian 
formulation appears to be qualitatively accurate. 

CONCLUSION 

In conclusion, the generalized Lagrangian method using flux limiters appears to have the 
following advantages over the corresponding Eulerian method: sliplines are resolved more 
sharply, shock resolution improves considerably with Mach number and no grid generation is 
required. Further, the generalized Lagrangian method, while retaining all the merits of the new 
Lagrangian method, overcomes some of the existing deficiencies of the latter (see Hui and Zhao5), 
and apart from producing more accurate and reliable results than the Eulerian formulation is 
actually easier to program—since the boundary between two adjacent cells always coincide with 
the slipline, the flux there required by the Godunov scheme is easier to compute; in contrast, 
the cell may lie in any of five regions separating the elementary waves, in the Eulerian formulation, 
resulting in more complicated programming. 
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